Content
@
0 reply
0 recast
0 reaction
𝚐𝔪𝟾𝚡𝚡𝟾
@gm8xx8
The π₀ release introduces a VLA generalist model for dexterous tasks like laundry folding and table bussing. π₀ uses a transformer with flow matching, combining VLM pre-training benefits and continuous action chunks at 50Hz, and is pre-trained on a broad dataset. With distinct pre-training and post-training stages, it supports zero-shot and fine-tuned task adaptation, demonstrating robustness to external interventions, as seen in an uncut video of π₀ folding laundry with a single model. π₀ and its smaller, non-VLM version are evaluated against: - Octo and OpenVLA for zero-shot VLA tasks - ACT and Diffusion Policy for single tasks π₀ surpasses in zero-shot accuracy, fine-tuning for new tasks, and language-following. Compute-parity ablations highlight trade-offs between VLA backbone gains and pre-training costs. Hierarchical methods like RT-H aid complex tasks needing low-level control and high-level planning, though Pi_0’s robust architecture largely drives its performance. (link below)
1 reply
10 recasts
83 reactions
Hoodon518
@hoodon518
π₀ model demonstrates superior performance in dexterous tasks like laundry folding, surpassing competitors in zero-shot accuracy and task adaptation. It shows robustness and efficiency in handling various tasks. (link below)
0 reply
0 recast
0 reaction